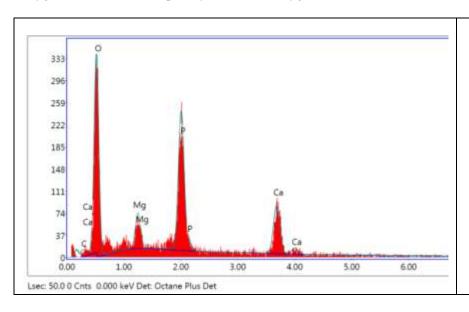
Collinsite from the Palermo Mine, N. Groton, NH

Tom Mortimer

I have included collinsite on my http://mindatnh.org/ NH species list since its inception in January 2009, but until this past year I had never seen one. Collinsite is not listed in Whitmore and Lawrence's book *The Pegmatite Mines Known as Palermo*, nor in earlier New Hampshire species lists (e.g. Janet Cares, *R&M*, vol. 65, No. 4, 1990). The first publications of NH collinsite occurred in 2006 with Jim Nizamoff's UNO thesis on the Palermo 2 pegmatite and in a GSA abstract (vol. 36, pg. 115) by Nizamoff et. al.

In June 2016, Jim Nizamoff generously gave me a Palermo 2 collinsite specimen for my New Hampshire

mineral species display on exhibit at the Discovery Center, Concord, NH.


Collinsite Palermo #2, N. Groton, NH 3 mm field of view. White pearlescent blades of collinsite on siderite crystals.

Collinsite Palermo #2, N. Groton, NH 3 cm specimen. Red arrow points to small vug containing collinsite.

Collinsite chemistry is $Ca_2(Mg,Fe^{2+})(PO_4)_2 \bullet 2H_2O$. It is a member of the fairfieldite group. The cation analysis in Jim's thesis gave $(Ca_{1.86}, Mg_{0.12})(Mg_{0.53},Fe_{0.42})(PO_4)_2 \bullet 2H_2O$ rounded to two decimal places, based on five oxygen atoms. Apparently some Mg can substitute in the Ca site. This is very close to an ideal collinsite formula.

A polished grain EDS analysis (BC236) on a sample from this specimen is given below. Clearly a calcium magnesium phosphate. No iron (Fe) was detected (@ 6.4 KeV). The chemistry calculated from this analysis suggested $Ca_{1.1}(Mg)(PO_4)_{2.5}$ •22 H_2O normalized for one atom of Mg. This is light on the calcium and heavy in the oxygen, however we frequently see excess oxygen with the BC EDS instrument.

Element	Weight %	Atomic %
ОК	63.18	77.73
MgK	4.59	3.71
PΚ	18.94	12.03
CaK	13.30	6.53